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Population size may shape the
accumulation of functional mutations
following domestication
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Abstract

Background: Population genetics theory predicts an important role of differences in the effective population size
(Ne) among species on shaping the accumulation of functional mutations by regulating the selection efficiency.
However, this correlation has never been tested in domesticated animals.

Results: Here, we synthesized 62 whole genome data in eight domesticated species (cat, dog, pig, goat, sheep,
chicken, cattle and horse) and compared domesticates with their wild (or ancient) relatives. Genes with significantly
different selection pressures (revealed by nonsynonymous/synonymous substitution rate ratios, Ka/Ks or ω) between
domesticated (Dω) and wild animals (Wω) were determined by likelihood-ratio tests. Species-level effective
population sizes (Ne) were evaluated by the pairwise sequentially Markovian coalescent (PSMC) model, and Dω/Wω

were calculated for each species to evaluate the changes in accumulation of functional mutations after
domestication relative to pre-domestication period. Correlation analysis revealed that the most recent (~ 10.
000 years ago) Ne(s) are positively correlated with Dω/Wω. This result is consistent with the corollary of the nearly
neutral theory, that higher Ne could boost the efficiency of positive selection, which might facilitate the overall
accumulation of functional mutations. In addition, we also evaluated the accumulation of radical and conservative
mutations during the domestication transition as: Dradical/Wradical and Dconservative/Wconservative, respectively.
Surprisingly, only Dradical/Wradical ratio exhibited a positive correlation with Ne (p < 0.05), suggesting that
domestication process might magnify the accumulation of radical mutations in species with larger Ne.

Conclusions: Our results confirm the classical population genetics theory prediction and highlight the important
role of species’ Ne in shaping the patterns of accumulation of functional mutations, especially radical mutations, in
domesticated animals. The results aid our understanding of the mechanisms underlying the accumulation of
functional mutations after domestication, which is critical for understanding the phenotypic diversification
associated with this process.

Keywords: Purifying selection, Positive selection, Selection dynamics, Effective population size

Background
In one of his major works, The Variation of Animals
and Plants Under Domestication, Darwin observed that
domestication is the process during which striking
phenotypic variation burgeons [1]. Much later, it has

been suggested that the diversification of phenotypic vari-
ation in domesticated species might be attributed to the
faster accumulation of functional (nonsynonymous) vari-
ants [2–4]. However, genome-wide patterns of accumula-
tion of functional mutations pre- and post-domestication
across different domesticated species are still poorly
understood. According to the population genetics theory,
fates of genetic variations may lie in the coupled effect of
changes in selection intensities and effective population
sizes (Ne) [5]. Against this backdrop of theoretical predic-
tion, it is reasonable to evaluate the relative efficiency of
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mutation accumulation before and after domestication in
the context of both selection and Ne.
It has been theorized that selection may act upon

domesticates in a stage-dependent manner [3, 6]. More
specifically, domestication may begin with an uninten-
tional process (unconscious selection), characterized by
the relaxation of selection constraints vital in wild envi-
ronments, alongside the introduction of novel selection
forces [7]. These early shifts in selection constraints may
have contributed to the emergence of domestication-
facilitating traits, such as increased docility and tame-
ness, which are thought to be prerequisites for the whole
domestication process [8]. Although the early (uncon-
scious) domestication began thousands of years ago,
deliberate human selection is a process that emerged
within the recent three centuries through intensive
breeding, which has led to rapid improvement of desir-
able traits and creation of most modern breeds [9, 10].
In addition to selection, another critical factor influen-
cing the accumulation of mutations is the changes in Ne.
Unlike selection, the effect of population size on genome
evolution is independent of specific domestication
episodes. Once domestic populations formed and be-
came isolated from their wild relatives, genetic drift,
characterized by diminished Ne, came to influence the
domestication processes [11]. In this sense, although the
eye-catching feature of domestication is selection itself,
it (selection) has to “dance with shackles on” as the end
results of selection are largely shaped within the frame
of lineage Ne.
Quantitatively, the magnitude of selection is commonly

measured by the ratio of the number of nonsynonymous
substitutions per nonsynonymous site (Ka) to the
number of synonymous substitutions per synonymous
site (Ks) - Ka/Ks (orω); where ω < 1 indicates purifying
selection,ω = 1 - neutral selection, andω > 1 - positive se-
lection [12–14]. Variations in selection strength may tune
the amount of mutations: studies have found that domes-
ticated animals accumulate functional mutations in some
mitochondrial genes much faster than their wild relatives,
in part due to the relaxed purifying selection [2, 15–17].
However, apparently, relaxation of purifying selection is
only one of the possible directions of changes in selection
strength, especially for nuclear genomes. In this synthe-
sized study, based on all arithmetic possibilities of Ka/Ks
changes following the domestication, we have identified
six possible directions of selection pressure dynamics (also
referred to as “selection dynamics” in this study) in
domesticated animals: relaxed purifying selection (RPR;
1 > Dω >Wω), intensified purifying selection (IPR; 1 >Wω >
Dω), intensified positive selection (IPS; Dω >Wω > 1),
relaxed positive selection (RPS; Wω >Dω > 1), positive
selection transition (PST; Wω < 1; Dω > 1), and purifying
selection transition (PRT; Wω > 1; Dω < 1). In this way, we

can trace the changes of accumulation of mutations from a
broader perspective of selection dynamics.
Although the role of selection in determining the ac-

cumulation or even fixation of functional mutations has
always been one of the focal points in evolutionary biol-
ogy, the efficiency of selection is believed to be largely
influenced by demographic changes in Ne [5]. On the
species level, different Ne may be the key factor influen-
cing the overall efficiency of selection. For example,
primates (humans and orangutans) have 1.5 times higher
Ka/Ks than rodent (mice and rats), probably due to
differences in Ne [14]. Likewise, human genomes may
exhibit lower levels of both purifying and positive selec-
tion than chimpanzee genomes, probably owing to a
smaller Ne in humans [18]. It has been suggested that
changes in the Ne may have influenced the efficiency of
selection for functional mutations from the very begin-
ning of domestication [3, 19]. However, the relationship
between Ne and accumulation of functional mutations
has never been formally tested. In addition, differences
in patterns of mutation accumulation of nuclear genes
among domesticated species remain poorly understood.
In this study, we have compared ω ratios, conservative
mutations, and radical mutations among the eight
domesticated species (pigs, dogs, goats, sheep, chicken,
cats, cattle and horses) for which a relatively large
amount of genomic data is available. These domesticated
animals may serve as an appropriate model to under-
stand how differences in the Ne have influenced the effi-
ciency of selection on the accumulation of mutations.

Methods
Datasets
We used genomic data from both domesticated animals
and their progenitors to compare their differences. In
total, 62 whole-genome datasets, including 36 genome
assemblies and 36 genomic re-sequencing short reads
(SRA), were downloaded from the NCBI database. To
increase the reliability of variant calling, only the re-
sequencing data with a comparatively high read depth in
the current database (ranging from 6.23× to 57.31×)
were included (Additional file 1). Since resequencing
genomic data usually do not have publicly available gene
annotations, we designed a “reference-mapping assem-
bly” strategy to facilitate local annotation, by incorporat-
ing reference CDS and gene annotations (gtf or gff ),
which were retrieved from the Ensembl database [20].
The “gff” file for goat (Table 1) was obtained from
GigaDB database (http://gigadb.org/) [21, 22].

Historical effective population sizes across species
As accumulation of nonsynonymous mutations is influ-
enced by Ne, especially at the species level [14], we in-
ferred historical demography by the pairwise sequentially
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Markovian coalescent (PSMC) model [23], using
resequencing data of wild animals with the highest read
depth (Additional file 1, Fig. 1). Parameters for the PSMC
analysis were “-N25 -t15 -r5 -p "4 + 25*2 + 4 + 6″” .

Reference-mapping assembly and CDS extraction
Given that some of the species included in the analysis
(cattle, dog, sheep, goat, cat, horse and chicken) have
only one or two publicly available genome assemblies
and gene annotations, a reference-mapping assembly
approach was used to generate genome sequences of all
downloaded short reads [24]. Sequencing adaptors
removal and data quality control were performed using
Trimmomatic-0.35 and FastQC [25, 26]. Reads were
discarded if Phred quality was < 20 over three consecu-
tive base pairs (bp) and shorter than 40 bp. Reference-
mapping was carried out with Bowtie2, with a very
sensitive alignment setting following suggestions in the
manual [27]. After sorting the aligned bam files by
Samtools v1.1, other tools in this package, including
mpileup, bcftools and vcfutils, were invoked to produce
the target genomes [28, 29]. These target genomes were
then used to extract the corresponding CDS sequences
with gKaKs v1.3 program by incorporating both CDS
and gene annotation (gff or gtf ) of public reference [30].

The dynamics of selective pressure
To calculate phylogeny-based Ka/Ks (ω) for each CDS in
each individual of a species, we generated phylogenies
and alignments as input files. Non-homologous se-
quences, multiple frame shift mutations and early stop
codons were deleted by BLAT [31] and bl2seq [32]. In
total, the number of sequence alignments varied from
14,441 in chicken to 23,019 in dog (Fig. 1). We produced
the phylogeny-aware alignments by invoking the codon
model in PRANK [33]. We randomly selected 1000
alignments of orthologs (determined using 1:1 orthologs
from the BioMart database [34]) with at least 1 k bp to

compute the maximum likelihood gene trees using
RAxML [35], with 100 fast bootstrap replicates. Based
on these gene trees, we used STAR [36] to infer phylo-
genetic trees for all studied species (Additional file 2).
Based on these alignments and phylogenetic trees, we

calculated Ka/Ks ratios for two types of branches, “wild”
and “domesticates”, using PAML [37]. To further deter-
mine the significance level between them, we used
“likelihood ratio test” (LRT) to compare two models,
“two-ratios model” (TRM) and “one-ratio model”
(ORM), with the chi-square approximation. TRM hy-
pothesis assumes a different ratio between domesticates
and wild branches, whereas ORM assumes the same ω
for all branches. For the Ka/Ks ratios with extreme
values, where only nonsynonymous or only synonymous
mutations were detected, we kept them only if they were
statistically significant [14]. For both domesticated and
wild/ancient branches, the mean ω values of significantly
different genes (Table 1, Fig. 2) were measured. In
addition, accumulation levels of functional mutations at
post-domestication stages relative to pre-domestication
stages were compared using a novel metric: Dω/Wω,
where D is a domesticated group and W a wild group
(Fig. 3a). Since annotation artefacts of reference ge-
nomes equally affect domesticated and wild groups, this
metric has the advantage of avoiding biases caused by
different annotations. Selection dynamics types (see
Introduction) were identified based on all arithmetic
possibilities of Ka/Ks changes (Table 2). By doing so, we
can examine (a) whether the overall proportion of non-
synonymous mutations has increased after domestica-
tion in different species; and (b) whether these changes
might be due to specific type(s) of selection dynamics.

Conservative and radical functional changes
It has been suggested that a high frequency of nonsy-
nonymous mutations can lead to an increased ratio of
radical mutations [38]. Here we categorized and com-
pared radical and conservative nonsynonymous muta-
tions based on physiochemical properties of proteins,
such as amino acid charge, polarity and volume [39].
Conservative mutations are the changes wherein pro-
teins retain similar physiochemical properties, whereas
radical mutations are the ones with radical changes in
physiochemical features of proteins. We evaluated the
occurrence of radical and conservative changes per
lineage based on a previously proposed method [39].
Subsequently, the changes after domestication relative to
before domestication were calculated by two metrics:
Dconservative/Wconservative and Dradical/Wradical (Fig. 3a).
Significance tests were performed using G-test (Fig. 4),
and Pearson correlation analysis was conducted to
evaluate whether the patterns of Dω/Wω, Dconservative/

Table 1 Genomes of the eight studied species

Species No. of
genomes

Total
transcripts

Differential
transcripts

Dω Wω

Cat 6 19,991 221 556.51 115.42

Dog 8 16,685 183 184.66 87.49

Pig 15 18,660 556 347.57 70.62

Chicken 8 14,441 84 230.2 230.17

Goat 4 16,680 342 316.76 168.65

Sheep 8 19,860 157 243.32 146.8

Cattle 6 19,881 179 185.16 200.47

Horse 7 18,954 205 95.38 280.92

Number of genomes analyzed per species, all transcripts used, transcripts with
statistically significant differences, and genome-wide Ka/Ks ratios in domesticates
(“D”) and their wild relatives (“W”)
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Wconservative and Dradical/Wradical across different species
might be correlated with Ne (Fig. 3b, c, d).

Results and discussion
Previous studies have observed faster accumulation of
non-silent mutations following domestication in some
animals, including dog, pig, yak and chicken, which is

believed to be a consequence of a decrease in Ne associ-
ated with domestication and relaxation of purifying
selection on mitochondrial genes in some domesticated
species [2, 16, 17], but the debate on whether all domes-
ticated animals exhibit a consistent trend is still ongoing
[40]. Considering large Ne differences across species, it
would be very interesting to investigate whether the

Fig. 1 Historical demography of the eight species. Generation time and mutation rate are based on previous reports [52–57]
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accumulation of functional mutations post- and pre-
domestication might exhibit interspecific heterogeneities.
Although more than 14,441 transcripts were analyzed

for each species, LRT detected less than 600 genes
exhibiting significant (p < 0.05) differences between
domesticates and their wild or ancient relatives (Table 1,
Additional file 3). Intriguingly, two opposite patterns
were observed among the significant Ka/Ks for the eight
species: dog, cat, pig, goat, sheep and chicken have
higher ω in domesticates than in their corresponding
wild relatives, whereas in horse and cattle this trend is

reversed (Fig. 2 and Table 1). This pattern was further
confirmed by Dω/Wω ratio (Fig. 3a), which was used to
avoid biases caused by putative differences in the level of
annotation among species. These ratios are lower than 1
in cattle and horse but higher than 1 in the other six
species. Interestingly, studies have revealed that, in com-
parison to small animals, large animals exhibit higher
levels of slightly deleterious mutations, which may lead
to population decline or even extinction [41]. In this
study, the ancestors of the two largest animals, cattle
and horse, exhibited the highest ω ratios among the wild

Fig. 2 Beanplot of Ka/Ks ratios for all differential genes between domesticates and corresponding wild relatives. Red lines represent overall mean
values for wild species (W) and domesticates (D) of the eight species. Blue and violet curves are density traces of Ka/Ks ratios for W and D, respectively.
Cyan and green small lines are individual Ka/Ks ratio for W and D, respectively
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relatives of the eight studied species, indicating that they
had accumulated the highest amount of (slightly) dele-
terious mutations.
To evaluate the functional effects of nonsynonymous

mutations, we categorized them as radical or conserva-
tive. We found that the numbers of radical mutations
are universally higher than the numbers of conservative
mutations in both domesticates and their progenitors for
all eight species (Fig. 4). When we further compared

Dconservative/Wconservative and Dradical/Wradical ratios across
species, we observed that both of these metrics are lower
than 1 for cattle and horse and higher than 1 for the
remaining six species (Fig. 3a). Hence, these results sug-
gest that domesticates may not share a common trend
in terms of the accumulation of non-silent mutations.
Interestingly, it seems that the most parsimonious

distinction between the two groups of species revealed
from our results is the body-mass, as cattle and horse

a b

c d

Fig. 3 Selection pressure, accumulation of radical and conservative mutations after domestication relative to before domestication. a Dω/Wω,

Dradical/Wradical and Dconservative/Wconservative ratios of the eight species. All significantly different genes were incorporated. Values shown in the
horizontal axis are raw data for body mass of the eight species based on previous studies [45]. b The Pearson correlation between Dω/Wω and
the most recent Ne (~ 10,000 years ago). c The Pearson correlation between Dconservative/Wconservative and the most recent Ne (~ 10,000 years ago).
d The Pearson correlation between Dradical/Wradical and the most recent Ne (~ 10,000 years ago)
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have more than three times higher body-mass than any
of the remaining six species (Fig. 3a). Thus, for the sake
of convenience, we can term the two groups as “LD”
(large body-mass domesticates, including cattle and
horse) and “SD” (small body-mass domesticates,
including cat, dog, pig, goat, sheep, and chicken). In
the field of evolutionary genetics, body-mass (or gen-
eration time) has usually been used as a proxy for Ne

due to the inverse relationship between them [42–47].
To analyze how different Ne may be involved in
affecting the selection efficiency, we evaluated their
Ne(s) using the PSMC method. Since this method can
only infer historical demography on an ancient time-
scale (~ 10,000 years ago) [23], it is appropriate for
comparisons of long-term interspecies differences in

Ne. PSMC analysis revealed that LD species have
lower most recent (~ 10,000 years ago) Ne than SD
species (Fig. 1). This difference in Ne is roughly con-
sistent with the predicted negative relationship be-
tween body-mass (or generation time) and Ne [42–47]
(Fig. 3a).
Pearson correlation revealed that Dω/Wω is significantly

correlated with Ne(s) in all eight species (p < 0.05, Fig. 3b),
which is consistent with theoretical population genetics
expectations. Nearly neutral theory suggests that the effect
of selection depends on the product of the effective popu-
lation size Ne and selection coefficient s (Nes) [5, 48].
Later, the relationship between ω, Ne and selection coeffi-

cient (s) has been formulated as ω ¼ S
1−e−S ; where S = 4Nes

[49]. According to the formula, to achieve the same
changes in ω, species with smaller Ne would have to
undergo much bigger changes in selection coefficient. In
other words, selection is expected to be inefficient in spe-
cies with small Ne, either when it comes to accumulation
of beneficial functional mutations (through positive
selection), or to removal of deleterious functional mu-
tations (by purifying selection). In contrast, selection
efficiency would be higher in populations with higher
Ne [50]. Thus, the main factor contributing to the
lower Ka/Ks after domestication in LD species,
observed in this study, might be their lower Ne(s),
which resulted in lesser efficiency of positive selection
to accumulate beneficial mutations. We also observed
a positive relationship between Dradical/Wradical and Ne

(Fig. 3d), which suggests that higher Ne might also

Table 2 The number of genes under different directions of
selection dynamics

Species More mutations Less mutations UN

PST IPS RPR RPS IPR PRT

Cat 155 0 36 1 3 26 0

Dog 47 7 50 5 19 42 13

Chicken 32 2 11 0 11 20 8

Goat 171 1 44 0 36 83 7

Sheep 75 0 24 0 16 38 0

Pig 290 3 116 2 70 64 11

Horse 31 2 14 2 61 94 1

Cattle 52 1 18 1 34 73 0

UN stands for the number of genes with unchanged selection pressure

Fig. 4 Numbers of radical and conservative mutations in domesticates and corresponding extant or ancient wild relatives. Stars above the horse
indicate a significant difference (G-test, p = 0.048) between radical and conservative mutations. Note: red and blue bars represent the numbers of
conservative and radical mutations per lineage, respectively; to save space, they have been partially overlapped. “D” represents domesticated
species and “W” represents wild species
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drive a faster accumulation of radical mutations, as a
result of a more efficient positive selection. This
conclusion was further confirmed by our selection
dynamics analysis (Table 2), where we found that the
SD species with higher Ne have more genes under
higher positive selection (PST + IPS). Thus, our results
revealed that under the frame of higher Ne the effi-
ciency of positive selection may be promoted at the
post-domestication stage.
Taken together, we detected a positive relationship

between the interspecies variation in Ne and the
tempo of accumulation of functional mutations, indi-
cating the existence of interspecific heterogeneity in
the efficiency of selection. It is worth noting that,
since our study was only limited to protein-coding re-
gions, future efforts should be made to explore how
the effects of regulatory elements might be influenced
by population parameters, considering their important
roles in domestication [51].

Conclusions
Animal domestication presents a unique opportunity
to study how the joint effects of selection and drift
influence the accumulation of mutations, especially
on a genome-wide scale. Rapidly-increasing amount
of available genomic data offers us an opportunity to
explore whether the differences in interspecific
demography might result in different rates of accu-
mulation of functional mutations, as predicted by the-
oretical population genetics. In this study, we found
that Dω/Wω and Dradical/Wradical are positively corre-
lated with the species-level effective population sizes.
Our results suggest that the impact of Ne on the
accumulation of functional (including radical) muta-
tions might be underestimated, and emphasize the
importance of maintaining a large population size for
strengthening the efficiency of selection in animal
breeding.
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